Search results

1 – 2 of 2
Article
Publication date: 5 March 2018

Siyang Deng, Stéphane Brisset and Stephane Clénet

This paper compares six reliability-based design optimization (RBDO) approaches dealing with uncertainties for a simple mathematical model and a multidisciplinary optimization…

Abstract

Purpose

This paper compares six reliability-based design optimization (RBDO) approaches dealing with uncertainties for a simple mathematical model and a multidisciplinary optimization problem of a safety transformer to highlight the most effective.

Design/methodology/approach

The RBDO and various approaches to calculate the probability of failure are is presented. They are compared in terms of precision and number of evaluations on mathematical and electromagnetic design problems.

Findings

The mathematical example shows that the six RBDO approaches have almost the same results except the approximate moment approach that is less accurate. The optimization of the safety transformer highlights that not all the methods can converge to the global solution. Performance measure approach, single-loop approach and sequential optimization and reliability assessment (SORA) method appear to be more stable. Considering both numerical examples, SORA is the most effective method among all RBDO approaches.

Originality/value

The comparison of six RBDO methods on the optimization problem of a safety transformer is achieved for the first time. The comparison in terms of precision and number of evaluations highlights the most effective ones.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 January 2024

Zujin Jin, Zixin Yin, Siyang Peng and Yan Liu

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy…

Abstract

Purpose

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy. This abstract introduces a novel approach, the nonlinear subsystem adaptive dispersed fuzzy compensation control (ADFCC) method, aimed at enhancing the precision of LOMPSs.

Design/methodology/approach

The ADFCC model for LOMPS is developed through a nonlinear fuzzy adaptive algorithm. This model incorporates control parameters and disturbance terms (such as those arising from the external environment, friction and correlation) between subsystems to facilitate ADFCC. Error analysis is performed using the subsystem output parameters, and the resulting errors are used as feedback for compensation control.

Findings

Experimental analysis is conducted, specifically under the commonly used concentric circle processing trajectory in LOMPS. This analysis validates the effectiveness of the control model in enhancing processing accuracy.

Originality/value

The ADFCC strategy is demonstrated to significantly improve the accuracy of LOMPS output, offering a promising solution to the problem of correlated disturbances. This work holds the potential to benefit a wide range of practical applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 2 of 2